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Chapter 1

Background

This chapter introduces the clinical and methodological foundations required for ECG-
based age estimation with deep learning. We first summarize the physiological meaning
of a standard 12-lead ECG and typical waveform components. We then describe how
ageing and cardiovascular pathology influence ECG morphology. Finally, we introduce
deep learning approaches for raw ECG waveforms and the basic concepts of survival
analysis that are commonly used to evaluate risk associations.

1.1 Electrocardiogram basics

A standard 12-lead electrocardiogram (ECG) is a non-invasive measurement of the
heart’s electrical activity. It is typically recorded over a short time window (commonly
10 seconds) and represented as multiple synchronous one-dimensional time series, each
corresponding to a lead with a different projection of the cardiac electrical vector.

An ECG heartbeat is commonly described by the P–QRS–T pattern. The P-wave
reflects atrial depolarization, the QRS complex corresponds to ventricular depolarization,
and the T-wave represents ventricular repolarization. In addition to morphology,
clinically used summary parameters include intervals (e.g., PR and QT/QTc) and
durations (e.g., P-wave duration, QRS duration), which can be derived from fiducial
points on the waveform.

1.2 Ageing effects observable in ECG

Ageing is associated with gradual changes in cardiac structure and conduction. Two
important long-term processes are cardiac remodelling (e.g., hypertrophy) and fibrosis,
which can manifest as subtle alterations in waveform morphology and timing. Because
these changes are often small at the level of individual ECG parameters, they may be
difficult to capture with rule-based analysis, but can still be present in the raw signal
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4 CHAPTER 1. BACKGROUND

in a distributed way across leads and waveform segments.
Recent work studying ECG-age models has shown that groups with higher predicted

ECG ageing effects tend to exhibit longer durations and intervals such as P duration,
PR interval, QRS duration and QTc, even though distributions overlap substantially
between groups [1]. This motivates the use of data-driven models that can combine
many weak ECG cues.

1.3 Deep learning for raw ECG waveforms

Modern ECG models typically process raw waveforms using one-dimensional convo-
lutional neural networks (1D-CNNs) or residual networks (ResNets). Compared to
hand-crafted features, such networks can learn hierarchical representations directly
from the signal, potentially capturing subtle, non-obvious patterns linked to physiology,
ageing, and disease.

In the ECG-age setting, a model is trained to predict chronological age from the
ECG waveform. The resulting predicted age can be interpreted as an ECG-derived
age estimate. A commonly used derived quantity is the age gap (also called ∆-age
or predicted age deviation), defined as the difference between predicted ECG age and
chronological age. This age gap is often evaluated both continuously and by categorizing
individuals into groups such as underestimation, correct prediction, and overestimation
using a fixed threshold (e.g., ±8 years) [1, 2].

1.4 Regression bias and age-gap confounding

When predicting age with regression, models often show regression-to-the-mean: younger
individuals tend to have their age overestimated and older individuals underestimated.
This produces a systematic negative correlation between chronological age and the raw
age gap, which can distort downstream analyses if the age gap is used as a biomarker.

A practical correction strategy is to remove the dependence of the age gap on
chronological age by regressing the age deviation on age and using the residual. One
concrete formulation defines predicted age PA, chronological age CA, and predicted
age deviation PAD = PA−CA. A linear correction can be derived from a fitted model

PA = α+ β · CA+ ε, (1.1)

leading to
PADc = PA− (α + β · CA). (1.2)

Residual non-linear dependence across ages can be further reduced by subtracting
the mean PADc within each integer age (or age band for sparse ages), yielding a
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bias-corrected PADbc [3]. Such corrections are especially relevant when associating age
gaps with outcomes that are themselves age-dependent.

1.5 Survival analysis essentials

Clinical outcomes are frequently studied with time-to-event analysis. A key challenge is
that not all individuals experience the event during observation; for those individuals
the event time is unknown beyond their last follow-up. This is handled via right-
censoring, where an individual contributes follow-up time until a censoring time (e.g.,
end of study), but the event is not observed.

Two common tools are:

• Kaplan–Meier estimation, which provides a non-parametric estimate of the
survival function and enables group comparisons via log-rank tests.

• Cox proportional hazards models, which estimate relative risk (hazard ratios)
associated with predictors, optionally adjusting for covariates.

In ECG-age research, survival analysis is typically used to quantify whether larger
positive age gaps are associated with increased mortality risk and whether negative
age gaps are protective, both in population-based cohorts and high-risk clinical cohorts
[1, 2, 3].





Chapter 2

State of the Art and Related Work

This chapter summarizes current research on AI-based ECG age estimation and the
interpretation of the ECG age gap as a biomarker. We focus on three themes that
directly inform this thesis: (i) evidence that the ECG age gap is associated with risk and
outcomes, (ii) the role of longitudinal (serial) ECGs, and (iii) methodological pitfalls
such as regression bias and confounding, including practical bias-correction strategies.
We also review explainability findings that suggest plausible physiological mechanisms.

2.1 ECG age and age gap as a biomarker

Deep learning models can estimate chronological age from raw 12-lead ECG waveforms.
The resulting ECG age is often used to define an age gap ∆-age (or predicted age devia-
tion, PAD), which is hypothesized to reflect biological rather than purely chronological
ageing.

A common evaluation approach categorizes individuals by whether predicted ECG
age deviates from chronological age beyond a predefined threshold. For example, in a
longitudinal population study, δ-age was categorized into three groups: overestimation
(δ-age > 8 years), correct prediction (|δ-age| ≤ 8 years), and underestimation (δ-age
< −8 years) [1]. Such groupings are attractive in clinical narratives (biologically older
vs. younger), but require careful statistical handling, especially across age ranges and
settings.

2.2 Model architectures and training pipelines for

ECG-age estimation

From a machine learning perspective, ECG-age models are typically trained as super-
vised regressors that map raw multi-lead ECG waveforms to chronological age. Most
approaches follow an end-to-end paradigm: the network receives minimally processed
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signals and learns its own feature representations without explicit hand-crafted ECG
measurements.

Residual networks trained on large-scale ECG corpora. A widely used open-
source ECG-age model is based on a residual network (ResNet) architecture and was
trained on ECG exams from 1,558,415 patients from a Brazilian telehealth network. The
model processes 12-lead ECGs end-to-end, without manual filtering or feature extraction
stages, and outputs a numerical age estimate [1]. In a hospital-based validation study,
the same originally published ResNet-based model was applied without recalibration;
importantly, the algorithm used only pre-processed raw ECG signals and no patient
metadata (e.g., sex, clinical history), supporting a clean assessment of signal-derived
ageing information [2].

1D-CNN baselines with temporal feature extraction and lead aggregation.
An alternative (and conceptually simpler) family of models uses 1D convolutional blocks
to extract temporal features from each lead, followed by an explicit aggregation step
across leads. For example, one recent implementation consists of multiple sequential
blocks of convolution, batch normalization, and max pooling, followed by a spatial
aggregation block across leads and final fully connected layers producing the age estimate
[3]. In that setup, the input is a raw 12× 5000 matrix corresponding to a 10-second
recording at 500 Hz, and the model is trained by minimizing mean squared error (MSE)
[3].

Preprocessing and data splitting choices. Across studies, preprocessing is inten-
tionally kept lightweight to preserve morphological information. Reported pipelines
include resampling ECGs to a common sampling rate and standardizing amplitude
units, with limited or no additional filtering [3, 2]. To avoid leakage, splits are performed
at the patient level (all ECGs from a patient in one split), and analyses often restrict
model training to the first ECG per patient to prevent over-representation of frequent
visitors [3].

Evaluation. Model accuracy is commonly summarized using MAE and correlation
between predicted ECG age and chronological age, sometimes complemented by regres-
sion slope/intercept analyses [3]. Downstream biomarker analyses then study the age
gap (or its bias-corrected variants) in relation to outcomes such as mortality, typically
using Cox proportional hazards models with adjustment for chronological age and other
confounders [3, 2, 1].
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2.3 Longitudinal ECGs and risk association

Most early ECG-age evaluations used only one ECG per individual. However, serial
ECGs can capture progression and stability of ageing effects. In a cohort with long
follow-up, incorporating two ECGs recorded 5–6 years apart strengthened the association
between pronounced ageing effects and mortality: the hazard ratio for the overestimation
group increased when using serial ECGs compared to a single follow-up ECG [1]. This
supports the hypothesis that persistent or consistently elevated ECG-age signals a
higher-risk phenotype than a single measurement alone.

Longitudinal analyses also motivate methodological design choices in new studies:
aligning time-to-event from a follow-up ECG to avoid label leakage, assessing the
stability of age-gap classifications, and quantifying whether consistent predictions over
time improve risk stratification [1].

2.4 ECG age in high-risk clinical cohorts

Beyond population screening, recent evidence suggests that ECG age retains prognostic
value in high-risk clinical settings. A study of patients with cardiovascular disease or
acute medical conditions used a validated open-source ECG-age model and reported
that a positive ∆-age (e.g., ≥ +8 years) was associated with higher long-term mortality,
while negative ∆-age (e.g., ≤ −8 years) was associated with lower risk [2]. Importantly,
an exploratory analysis found an optimal cutoff close to the commonly used ±8 years
threshold [2].

Such results broaden the potential utility of ECG age from preventive care toward
real-world cardiology and acute care, but also highlight that comorbidity burden may
interact with the correlation between ECG age and chronological age, suggesting that
the age gap can reflect both ageing and disease processes [2].

2.5 Regression bias and bias-adjusted age deviation

A key methodological challenge is regression bias, which creates a systematic dependence
of the raw age deviation on chronological age. This can invert or obscure associations
when PAD is correlated with outcomes that themselves vary strongly with age.

A recent large-scale study explicitly quantified this effect. The authors observed a
substantial negative correlation between chronological age and PAD, consistent with
regression-to-the-mean, and proposed bias-corrected variants: a linear correction using
a fitted regression of predicted age on chronological age, and an additional age-level
correction to remove remaining non-linear dependencies, yielding PADbc [3]. Using
PADbc changed the direction of associations with multiple cardiovascular risk factors
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and reversed the qualitative interpretation of Kaplan–Meier survival curves compared
to uncorrected PAD, while multivariable Cox models that adjust for chronological age
produced more consistent results [3].

For new studies aiming to interpret ECG-age as a biomarker, this implies that:

• analyses should test and report the dependence between the age gap and chrono-
logical age;

• categorical thresholds derived from prediction error (e.g., MAE-based cutoffs)
should be interpreted with caution across ages;

• bias-corrected age deviation (or explicit adjustment for age in outcome models) is
often necessary to avoid misleading conclusions [3].

2.6 Explainability and mechanistic interpretation

To build trust and generate hypotheses, ECG-age studies often use post-hoc explain-
ability methods such as saliency maps or integrated gradients. Across multiple cohorts,
explainability analyses repeatedly highlight the importance of atrial activity, particularly
the P-wave and adjacent segments, for age prediction [1, 2, 3]. Lead-wise relevance
analyses also suggest that multiple leads contribute, with notable importance of precor-
dial leads (e.g., V1 and V4) that provide complementary information about atrial and
ventricular activity [1].

While these observations are biologically plausible, it is important to remember
that saliency indicates sensitivity of the model output to input regions, not causal
mechanisms. Therefore, explainability should be combined with robust validation,
subgroup analyses (age, sex, rhythm), and sanity checks to mitigate over-interpretation.

2.7 Summary and open challenges

The current state of research supports ECG age and the age gap as promising signals
associated with cardiovascular risk and mortality across settings, including longitudinal
population cohorts and high-risk clinical cohorts [1, 2]. At the same time, method-
ological issues such as regression bias can materially affect downstream associations,
motivating bias correction and careful study design [3]. Finally, emerging explainability
results suggest that age-related information is distributed across leads and waveform
segments, with repeated emphasis on atrial conduction markers, providing a direction
for mechanistic follow-up [1, 2].



Chapter 3

Data and Cohort Construction

This chapter describes the data sources and the cohort definition used in this thesis. The
goal is to build a reproducible pipeline that links ECG waveforms to patient-level clinical
information and constructs analysis cohorts suitable for training ECG-age models and
downstream association analyses.

3.1 Data sources

We use two linked critical-care resources:

• MIMIC-IV-ECG: a waveform database containing standard 12-lead ECG record-
ings.

• MIMIC-IV (hospital module): structured electronic health record (EHR)
data including demographics, diagnoses, and outcomes.

ECGs are linked to EHR information primarily via subject_id (patient identifier).
When available, hadm_id enables admission-level linkage to hospitalization-specific
events. This design allows enrichment of each ECG with patient-level variables such as
age at recording, sex, comorbidities derived from diagnosis codes, and mortality.

3.2 Label definition: chronological age at ECG

For each ECG, the primary label is chronological age at the time of recording. In de-
identified hospital datasets, date shifting and anchor-year schemes may require special
handling. We compute age using the dataset provided demographic fields and the ECG
acquisition time, ensuring consistency across all records and preventing information
leakage from future events.
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Cohort / filtering step #ECGs #Patients
All linked ECG records (matched dataset) 800,035 161,352
No-CVD adults (≥ 18; exclude CVD by ICD) 124,680 62,893
One ECG per patient (index ECG) 62,893 62,893
Age-restricted (18–65 years; one ECG per patient) 54,947 54,947

Table 3.1: Cohort overview and filtering steps. Counts are reported as ECG recordings
and unique patients.

3.3 Inclusion and exclusion criteria

We define an analysis cohort with the following general criteria:

• adult patients (≥ 18 years at ECG),

• ECGs passing basic signal quality checks (e.g., excluding corrupted waveforms or
acquisition failures),

• one ECG per patient for model training and primary analyses, to avoid over-
weighting frequent visitors.

Depending on the experiment, we further define a near-healthy cohort by excluding
patients with evidence of cardiovascular disease (CVD) based on diagnosis codes.
Concretely, we filter out subjects with ICD codes indicating CVD (e.g., ICD-10 codes
starting with I and ICD-9 codes in the range 390–459), using diagnosis tables indexed
by subject_id and hadm_id. This yields a cohort enriched for subjects without known
CVD at the time of ECG.

Dataset scale. Starting from the full matched ECG dataset, the linked MIMIC-IV-
ECG and MIMIC-IV resources contain 800,035 ECG recordings from 161,352 unique
patients. After excluding patients with cardiovascular disease diagnoses (ICD-10 I*

and ICD-9 390–459) and restricting to adults (≥ 18 years at ECG time), the resulting
near-healthy (no-CVD adult) subset contains 124,680 ECGs from 62,893 patients. To
prevent patient-level leakage and over-representation of frequent visitors, we further
reduce the cohort to one ECG per patient, resulting in 62,893 ECGs. For the initial
baseline experiments, we additionally restrict the age range to 18–65 years, yielding
54,947 ECGs.

3.4 Train/validation/test splitting

To prevent patient-level leakage, data are split by subject_id, ensuring that all
ECGs from a given patient appear in exactly one split. We use three-way splits
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(train/validation/test) and, when performing risk factor or survival analyses, we keep a
sufficiently large test split to support statistical power.

Because age distributions can be highly imbalanced, weconstruct age-balanced
evaluation subsets by capping the number of patients per integer age (e.g., a maximum
count per age-year) and by stratifying splits by sex and age bands. This reduces the
impact of regression to the mean artefacts and improves interpretability of subgroup
performance.

3.5 Signal preprocessing

ECG waveforms are converted into a consistent tensor format:

• lead ordering is standardized across all records,

• signals are resampled if required to a common sampling frequency,

• amplitude units are normalized to a consistent scale,

• optional per-lead normalization (zero mean, unit variance) is applied based on
training data statistics.

Quality control includes rejecting ECGs with missing leads, extreme noise, or
inconsistent lengths. All preprocessing steps are implemented deterministically to
ensure reproducibility.

3.6 Outcome and follow-up definitions

For association analyses, we consider outcomes available in the EHR such as all cause
mortality. Time-to-event is defined from the ECG acquisition time to the event time
(death) or censoring time (end of data availability), applying right-censoring for patients
without an observed event. For diagnosis based outcomes, we define incident events
by requiring that relevant diagnosis codes occur after the index ECG (with sensitivity
analyses to address imperfect timing in retrospective labels).

3.7 Reproducibility

All cohort extraction, linkage, and preprocessing steps are implemented as a modular
pipeline. Each step logs counts and exclusion reasons (e.g., number of patients removed
due to CVD codes, age constraints, or waveform issues), enabling traceability and
straightforward auditing of cohort construction decisions.
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